Hartle–Thorne metric

Approximate solution to Einstein's field equations
General relativity
Spacetime curvature schematic
G μ ν + Λ g μ ν = κ T μ ν {\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\kappa }T_{\mu \nu }}
Fundamental concepts
  • Equivalence principle
  • Special relativity
  • World line
  • Pseudo-Riemannian manifold
Phenomena
  • Kepler problem
  • Gravitational lensing
  • Gravitational redshift
  • Gravitational time dilation
  • Gravitational waves
  • Frame-dragging
  • Geodetic effect
  • Event horizon
  • Singularity
  • Black hole
Spacetime
  • icon Physics portal
  •  Category
  • v
  • t
  • e

The Hartle–Thorne metric is an approximate solution of the vacuum Einstein field equations of general relativity[1] that describes the exterior of a slowly and rigidly rotating, stationary and axially symmetric body.[2]

The metric was found by James Hartle and Kip Thorne in the 1960s to study the spacetime outside neutron stars, white dwarfs and supermassive stars. It can be shown that it is an approximation to the Kerr metric (which describes a rotating black hole) when the quadrupole moment is set as q = a 2 a M 3 {\displaystyle q=-a^{2}aM^{3}} , which is the correct value for a black hole but not, in general, for other astrophysical objects.

Metric

Up to second order in the angular momentum J {\displaystyle J} , mass M {\displaystyle M} and quadrupole moment q {\displaystyle q} , the metric in spherical coordinates is given by[1]

g t t = ( 1 2 M r + 2 q r 3 P 2 + 2 M q r 4 P 2 + 2 q 2 r 6 P 2 2 2 3 J 2 r 4 ( 2 P 2 + 1 ) ) , g t ϕ = 2 J r sin 2 θ , g r r = 1 + 2 M r + 4 M 2 r 2 2 q P 2 r 3 10 M q P 2 r 4 + 1 12 q 2 ( 8 P 2 2 16 P 2 + 77 ) r 6 + 2 J 2 ( 8 P 2 1 ) r 4 , g θ θ = r 2 ( 1 2 q P 2 r 3 5 M q P 2 r 4 + 1 36 q 2 ( 44 P 2 2 + 8 P 2 43 ) r 6 + J 2 P 2 r 4 ) , g ϕ ϕ = r 2 sin 2 θ ( 1 2 q P 2 r 3 5 M q P 2 r 4 + 1 36 q 2 ( 44 P 2 2 + 8 P 2 43 ) r 6 + J 2 P 2 r 4 ) , {\displaystyle {\begin{aligned}g_{tt}&=-\left(1-{\frac {2M}{r}}+{\frac {2q}{r^{3}}}P_{2}+{\frac {2Mq}{r^{4}}}P_{2}+{\frac {2q^{2}}{r^{6}}}P_{2}^{2}-{\frac {2}{3}}{\frac {J^{2}}{r^{4}}}(2P_{2}+1)\right),\\g_{t\phi }&=-{\frac {2J}{r}}\sin ^{2}\theta ,\\g_{rr}&=1+{\frac {2M}{r}}+{\frac {4M^{2}}{r^{2}}}-{\frac {2qP_{2}}{r^{3}}}-{\frac {10MqP_{2}}{r^{4}}}+{\frac {1}{12}}{\frac {q^{2}\left(8P_{2}^{2}-16P_{2}+77\right)}{r^{6}}}+{\frac {2J^{2}(8P_{2}-1)}{r^{4}}},\\g_{\theta \theta }&=r^{2}\left(1-{\frac {2qP_{2}}{r^{3}}}-{\frac {5MqP_{2}}{r^{4}}}+{\frac {1}{36}}{\frac {q^{2}\left(44P_{2}^{2}+8P_{2}-43\right)}{r^{6}}}+{\frac {J^{2}P_{2}}{r^{4}}}\right),\\g_{\phi \phi }&=r^{2}\sin ^{2}\theta \left(1-{\frac {2qP_{2}}{r^{3}}}-{\frac {5MqP_{2}}{r^{4}}}+{\frac {1}{36}}{\frac {q^{2}\left(44P_{2}^{2}+8P_{2}-43\right)}{r^{6}}}+{\frac {J^{2}P_{2}}{r^{4}}}\right),\end{aligned}}}

where P 2 = 3 cos 2 θ 1 2 . {\displaystyle P_{2}={\frac {3\cos ^{2}\theta -1}{2}}.}

See also

  • Astronomy portal
  • iconPhysics portal

References

  1. ^ a b Frutos Alfaro, Francisco; Soffel, Michael (2017). "On the Post-Linear Quadrupole-Quadrupole Metric". Revista de Matemática: Teoría y Aplicaciones. 24 (2): 239. arXiv:1507.04264. doi:10.15517/rmta.v24i2.29856. S2CID 119159263.
  2. ^ Hartle, James B.; Thorne, Kip S. (1968). "Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars". The Astrophysical Journal. 153: 807. Bibcode:1968ApJ...153..807H. doi:10.1086/149707.


Stub icon

This relativity-related article is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e